

КАТАЛОГ ПРОДУКТОВ И РЕШЕНИЙ

«Вираменти «Энергоавтоматизация»

СОДЕРЖАНИЕ

ОКОМПАНИИ	2
АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ	4
АВТОМАТИЗИРОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ	4
АВТОМАТИЗИРОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ ЭЛЕКТРОСНАБЖЕНИЕМ	8
АВТОМАТИЧЕСКАЯ СИСТЕМА ПОЖАРНОЙ СИГНАЛИЗАЦИИ, КОНТРОЛЯ ЗАГАЗОВАННОСТИ И ПОЖАРОТУШЕНИЯ	12
КОМПЬЮТЕРНЫЕ ТРЕНАЖЕРНЫЕ КОМПЛЕКСЫ	14
СИСТЕМА ОПЕРАТИВНО-ДИСПЕТЧЕРСКОГО УПРАВЛЕНИЯ	16
СИСТЕМА МОНИТОРИНГА СОСТОЯНИЯ ОСНОВНОГО И ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ «ГЭС-3000»	18
СИСТЕМЫ ПРОМЫШЛЕННОГО ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА	22
КОМПЛЕКС АНАЛИЗАТОРНЫЙ ПРОМЫШЛЕННЫХ ВЫБРОСОВ «АСКВГ/ПЭК-3000»	22
КОМПЛЕКС АНАЛИЗАТОРНЫЙ АТМОСФЕРНЫХ ПАРАМЕТРОВ «АСАП/ПЭК-3000»	24
КОМПЛЕКС АНАЛИЗАТОРНЫЙ ПРОМЫШЛЕННЫХ СБРОСОВ «АСКСВ/ПЭК-3000»	26
СИСТЕМЫ ПОТОЧНОГО АНАЛИЗА ПАРАМЕТРОВ СРЕД	28
АНАЛИЗАТОРНЫЙ КОМПЛЕКС ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ «АКДНП»	28
АВТОМАТИЗИРОВАННАЯ СИСТЕМА КОНТРОЛЯ КИСЛОРОДА В ДЫМОВЫХ И ВЫХЛОПНЫХ ГАЗАХ «ОКСИ-ЭА»	30
АНАЛИЗАТОРНЫЙ КОМПЛЕКС ОПРЕДЕЛЕНИЯ КАЧЕСТВЕННОГО СОСТАВА ГАЗА	32
СИСТЕМА ИЗМЕРЕНИЯ КОЛИЧЕСТВА И ПОКАЗАТЕЛЕЙ КАЧЕСТВА	34
СИСТЕМА ИЗМЕРЕНИЯ КОЛИЧЕСТВА И ПОКАЗАТЕЛЕЙ КАЧЕСТВА НЕФТИ И НЕФТЕПРОДУКТОВ	34
СИСТЕМА ИЗМЕРЕНИЯ КОЛИЧЕСТВА И ПОКАЗАТЕЛЕЙ КАЧЕСТВА ВОДЫ	36
СИСТЕМА ИЗМЕРЕНИЯ КОЛИЧЕСТВА И ПОКАЗАТЕЛЕЙ КАЧЕСТВА ГАЗА	38
СИСТЕМА ПРОМЫШЛЕННОГО ЭЛЕКТРООБОГРЕВА «ЭА-ТЕРМ»	40
ЦЕНТР СЕРТИФИКАЦИИ И ИСПЫТАНИЙ АВТОМАТИЗИРОВАННЫХ СИСТЕМ И СРЕДСТВ АВТОМАТИЗАЦИИ	42
БЛОКИ ТЕХНОЛОГИЧЕСКИЕ КОНТЕЙНЕРНОГО ТИПА «ЭА-БТ»	44
БЛОЧНО-МОДУЛЬНЫЕ ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ «ЭА-КТП»	46
НИЗКОВОЛЬТНЫЕ КОМПЛЕКТНЫЕ УСТРОЙСТВА ТИПА «ЭА-КПТ»	48
ШКАФЫ ПРОТИВОАВАРИЙНОЙ ЗАЩИТЫ «ЭА-КПТ»	50
ШКАФЫ ИЗМЕРЕНИЯ И УПРАВЛЕНИЯ «ЭА-КАТ»	52
ШКАФЫ КОММУНИКАЦИОННЫЕ «ЭА-КИТ»	54

О КОМПАНИИ

ООО «Научно-технический центр «ЭНЕРГОАВТОМАТИЗАЦИЯ» представлен на рынке инжиниринговых услуг с 2015 года и является системным интегратором комплексных решений по автоматизации технологических процессов и систем энергообеспечения при строительстве, модернизации и реконструкции предприятий нефтегазового сектора.

Отличительная особенность научно-технического центра заключается в том, что он предоставляет комплексные решения – от обоснования инвестиций до сдачи объектов в эксплуатацию, обеспечивая заказчика качественной проектной продукцией, высокотехнологичным оборудованием и комплексными инжиниринговыми услугами на базе эффективного подхода к исполнению проектов.

Научно-технический центр «ЭНЕРГОАВТОМАТИЗАЦИЯ» ориентирован на качество и высокую эффективность. Компания активно развивается в векторе единой зоны ответственности перед заказчиком, стремительно наращивает компетенции, административные и производственные мощности, разрабатывает линию собственных продуктов и решений, выстраивает взаимодействие с ведущими отечественными производителями и локализует производство лучших иностранных решений.

В НТЦ «ЭНЕРГОАВТОМАТИЗАЦИЯ» сформировалась профессиональная команда специалистов, нацеленная на результат и обладающая всеми необходимыми компетенциями. Опыт исполнения проектов и наработанные знания позволяют компании оптимизировать и унифицировать проектные решения, а также эффективно организовать выполнение всех стадий проектирования.

Активно участвуя в реализации политики импортозамещения, НТЦ «ЭНЕРГОАВТОМАТИЗАЦИЯ» осуществляет разработку продуктов и решений, производство которых подтверждено сертификатами и актами экспертизы о соответствии требованиям, предъявляемым к продукции, произведенной на территории Российской Федерации.

Производственная площадка предприятия оснащена современным оборудованием, инструментом и оснасткой, позволяющими выпускать высококачественные решения в области средств автоматизации и энергообеспечения. На территории производства располагается полигон для проведения приемо-сдаточных испытаний продукции с возможностью присутствия представителей заказчика.

НТЦ «ЭНЕРГОАВТОМАТИЗАЦИЯ» обладает всеми необходимыми компетенциями и большим опытом для обеспечения оборудованием и материалами любых технологических объектов добычи, транспортировки, хранения и переработки нефти и газа.

УПРАВЛЕНИЕ КАЧЕСТВОМ

В ООО «НТЦ «ЭНЕРГОАВТОМАТИЗАЦИЯ» внедрена и функционирует интегрированная система менеджмента, соответствующая требованиям стандартов ГОСТ Р ИСО 9001-2015, ГОСТ Р ИСО 14001-2007, ГОСТ Р 54934-2012/ ОНЅАЅ 18001-2007 и СТО Газпром 9001-2018, позволяющая эффективно реализовывать «Политику и цели в области качества, промышленной и экологической безопасности, охраны труда и здоровья» и достигать лидирующих позиций в области промышленной автоматизации и энергообеспечения на профильном рынке.

В структуру Общества входит Департамент управления качеством, в составе которого находятся Служба строительного контроля и технического надзора, Отдел технического контроля и специалисты системы менеджмента качества. Все специалисты Департамента управления качеством имеют профильное образование, высокую квалификацию и опыт.

Система управления качеством выстроена таким образом, что позволяет оценивать качество продукции / услуг на всех этапах жизненного цикла: входной, операционный, приемо-сдаточный контроль, гарантийное и постгарантийное обслуживание, в том числе в рамках ПНР, ШМР и эксплуатации оборудования либо объектов.

Система учета и анализа несоответствий автоматизирована на базе программного продукта 1С и позволяет в оперативном режиме принимать решения корректирующего или предупреждающего характера.

Производственная площадка и специалисты ООО «НТЦ «ЭНЕРГОАВТОМАТИЗАЦИЯ» обеспечены соответствующим испытательным оборудованием, средствами измерения и контроля.

В Обществе действует порядка 30 сертификатов соответствия на продукцию.

Руководство ООО «НТЦ «ЭНЕРГОАВТОМАТИЗАЦИЯ» постоянно совершенствует и обеспечивает возможность повышения удовлетворенности всех заинтересованных сторон, соблюдения законодательных, нормативных и других требований, относящихся к качеству продукции и услуг, промышленной и экологической безопасности, охране труда и здоровья.

АВТОМАТИЗИРОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ НА БАЗЕ ПРОГРАММНО-ТЕХНИЧЕСКОГО КОМПЛЕКСА «ИНТЕЛЕКС-3000»

Автоматизированная система управления технологическими процессами (далее — АСУ ТП) на базе ПТК «ИНТЕЛЕКС-3000» — это комплексное решение автоматизированного управления, построенное на базе современных программных и технических средств, обеспечивающее получение информации о состоянии технологического объекта управления, оценку информации, выбор управляющих воздействий и их реализацию.

Назначение

- поддержание установленных режимов технологического процесса за счет контроля и изменения технологических параметров;
- выдача команд на исполнительные механизмы;
- визуальное отображение данных о производственном процессе и состоянии технологического оборудования;
- предупреждение аварийных ситуаций;
- анализ контролируемых значений;
- стабилизация режимных параметров и технологических показателей.

Состав

- Средний уровень шкафы автоматизации типа «ЭА-КАТ» и «ЭА-КПТ», обеспечивающие сбор информации с датчиков нижнего уровня и реализующие алгоритмы управления и защиты исполнительными механизмами технологического процесса. Шкафы автоматизации по определенному функционалу реализованы в виде шкафов управления (ШУ), кроссоворелейных шкафов (ШКР), устройство связи с объектами (УСО) и шкафов комбинированных модификаций.
- Верхний уровень шкафы коммуникационные типа «ЭА-КИТ», шкафы рабочих и серверных станций типа «ЭА-КИТ», АРМ операторов технологического процесса, АРМ инженера АСУ ТП и инженера КИПиА.

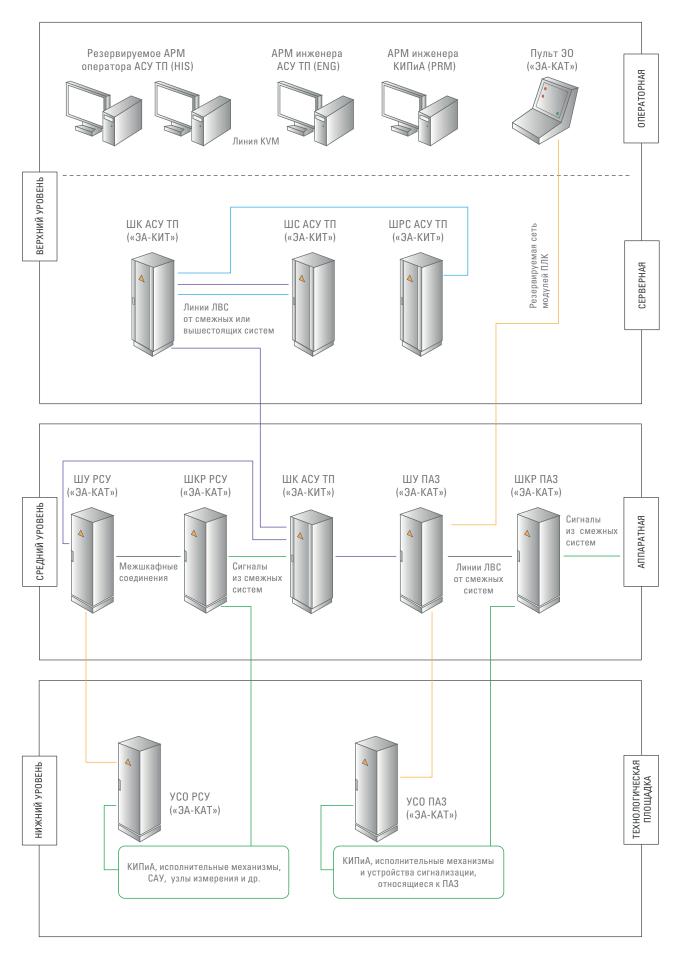
Наименование характеристики	Значение	
Периодичность опроса аналоговых и дискретных сигналов, с:		
• по каналам защиты	не более 0,1	
• по другим каналам	не более 0,5	
Задержка формирования команды управления (для дискретного выхода) от момента появления инициирующего эту команду соответствующего входного сигнала, с:		
• для быстродействующих каналов	не более 0,1	
• для других каналов	не более 0,5	
Метрологическое обеспечение		
Пределы допускаемой основной приведенной к диапазону измерения погрешности, %	не более 0,2	

^{*} Приведенные характеристики являются типовыми и могут быть изменены по требованию заказчика.

Технические характеристики*

Наименование характеристики	Значение
Обмен данными с устройствами нижнего уровня	унифицированные входные сигналы 0-5 мА; 0-20 мА;4-20 мА (Hart); унифицированные входные сигналы 0-1 В, 0-10 В; унифицированные выходные сигналы 0-20мА, 4-20 мА (Hart); входные сигналы типа NAMUR; дискретные сигналы типа «сухой контакт»; дискретные сигналы 24 VDC; дискретные сигналы 220 VAC; модыз(RTU/TCP); Profibus, Profinet; ГОСТ Р МЭК 60870-5-101; ГОСТ Р МЭК 60870-5-104; фирменные протоколы производителей
Обмен данными с устройствами смежных систем	Modbus (RTU/TCP), OPC DA, OPC UA
Возможность обмена данными с устройствами уровня управления производством	Да

^{*} Приведенные характеристики являются типовыми и могут быть изменены по требованию заказчика.


Электропитание обеспечивается за счет использования трех независимых взаиморезервируемых источников питания:

Наименование параметра	Значение
Два основных независимых источника, В	~ 230 B ±10%
Источник бесперебойного питания, В	~230 B
Время автономной работы от ИБП, мин.	не менее 30

Эксплуатационные характеристики

Наименование параметра	Значение
Температура эксплуатации, °С	от +10 до +35
Атмосферное давление, кПа	от 84 до 106
Относительная влажность воздуха при температуре 35 °C, %	от 45 до 75
Среднее время наработки ПТК, ч.	не менее 15 000
Назначенный срок службы, лет	15

Типовая структурная схема

Сертификация

АСУТП на базе ПТК «ИНТЕЛЕКС-3000» производится в соответствии с требованиями ГОСТ, Технического регламента Таможенного союза, отраслевыми стандартами и регламентами предприятий заказчика.

Компоненты ПТК «ИНТЕЛЕКС-3000» являются собственной разработкой ООО «НТЦ «ЭНЕРГОАВТОМАТИЗАЦИЯ» и включают в себя шкафы автоматизации «ЭА-КАТ», «ЭА-КИТ», сертифицированные по стандартам Технического регламента Таможенного союза и в системе добровольной сертификации ИНТЕРГАЗСЕРТ.

АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ЭЛЕКТРОСНАБЖЕНИЕМ НА БАЗЕ ПРОГРАММНО-ТЕХНИЧЕСКОГО КОМПЛЕКСА «ИНТЕЛЕКС-3000»

Автоматизированные системы управления электроснабжением (далее — АСУ Э) на базе ПТК «ИНТЕЛЕКС-3000» — это комплексное решение автоматизированного управления, построенное на базе современных программных и технических средств, обеспечивающее функции дистанционного контроля и управления распределением электроэнергии на предприятии независимо от сложности объекта с учетом специфики опасных производственных объектов.

Назначение

- предоставление оперативному и диспетчерскому персоналу достоверной информации по текущим характеристикам сетей электроснабжения, состоянию и режимам работы энергетического оборудования электрических подстанций;
- реализация функций телеуправления объектами электроснабжения в дистанционном режиме;
- предупреждение ошибочных действий персонала, обеспечение своевременного и грамотного реагирования на предаварийные и аварийные ситуации;
- автоматическое ведение журналов технологических событий и предоставление инструментов для просмотра и анализа аварийных осциллограмм, действий операторов, истории изменения контролируемых параметров.

Состав

- Средний уровень шкафы УСО типа «ЭА-КАТ» для непосредственного подключения к объектам жизнеобеспечения производства, к которым относятся блочные и стационарные электроустановки разного номинала и назначения, системы водоснабжения и отведения, котельные.
- Верхний уровень шкафы коммуникационные типа «ЭА-КИТ», в которых размещены сетевые коммутаторы и средства защиты информации, для обмена информацией между уровнями системы и вышестоящими системам; шкафы рабочих и серверных станций типа «ЭА-КИТ», которые комплектуются рабочими и серверными станциями высокой надежности, АРМ инженера АСУЭ, АРМ инженера-релейщика.

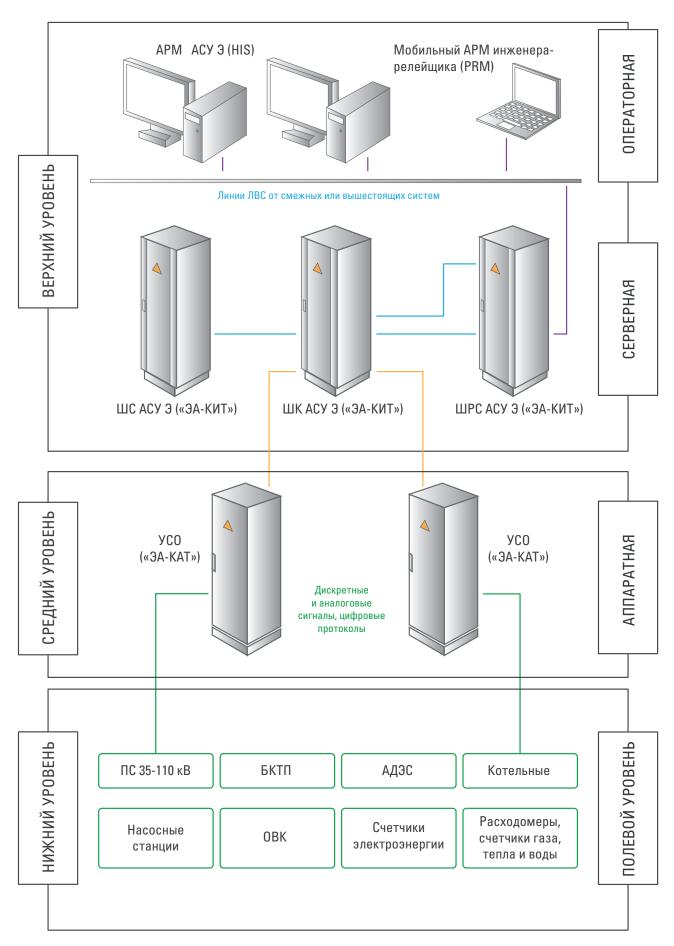
Наименование характеристики	Значение	
Периодичность опроса аналоговых и дискретных сигналов, с:		
• по каналам защиты	не более 0,1	
• по другим каналам	не более 0,5	
Задержка формирования команды управления (для дискретного выхода) от момента появления инициирующего эту команду соответствующего входного сигнала, с:		
• для быстродействующих каналов	не более 0,1	
• для других каналов	не более 0,5	
Метрологическое обеспечение		
Пределы допускаемой основной приведенной к диапазону измерения погрешности, %	не более 0,2	

^{*} Приведенные характеристики являются типовыми и могут быть изменены по требованию заказчика.

Технические характеристики*

Наименование характеристики	Значение
Обмен данными с устройствами нижнего уровня	унифицированные входные сигналы 0-5 мА; 0-20 мА;4-20 мА (Hart); унифицированные входные сигналы 0-1 В, 0-10 В; дискретные сигналы типа «сухой контакт»; дискретные сигналы 24 VDC; дискретные сигналы 220 VAC; Modbus (RTU/TCP); Profibus, Profinet; ГОСТ Р МЭК 60870-5-101; ГОСТ Р МЭК 60870-5-103; ГОСТ Р МЭК 60870-5-104; фирменные протоколы производителей
Обмен данными с устройствами смежных систем	Modbus(RTU/TCP); OPC DA, OPC UA; FOCT P MЭK 60870-5-101; FOCT P MЭK 60870-5-103; FOCT P MЭK 60870-5-104
Возможность обмена данными с устройствами уровня управления производством	Да

^{*} Приведенные характеристики являются типовыми и могут быть изменены по требованию заказчика.


Электропитание обеспечивается за счет использования трех независимых взаиморезервируемых источников питания:

Наименование параметра	Значение
Два основных независимых источника, В	~ 230 B ±10%
Источник бесперебойного питания, В	~230 B
Время автономной работы от ИБП, мин.	не менее 30

Эксплуатационные характеристики

Наименование параметра	Значение
Температура эксплуатации, °С	от +10 до +35
Атмосферное давление, кПа	от 84 до 106
Относительная влажность воздуха при температуре 35 °C, %	от 45 до 75
Среднее время наработки ПТК, ч.	15 000
Назначенный срок службы, лет	15

Типовая структурная схема

Сертификация

АСУ Э на базе ПТК «ИНТЕЛЕКС-3000» производится в соответствии с требованиями ГОСТ, Технического регламента Таможенного союза, отраслевыми стандартами и регламентами предприятий заказчика.

Компоненты ПТК «ИНТЕЛЕКС-3000» являются собственной разработкой ООО «НТЦ «ЭНЕРГОАВТОМАТИЗАЦИЯ» и включают в себя шкафы автоматизации «ЭА-КАТ», «ЭА-КИТ», сертифицированные по стандартам Технического регламента Таможенного союза и в системе добровольной сертификации ИНТЕРГАЗСЕРТ.

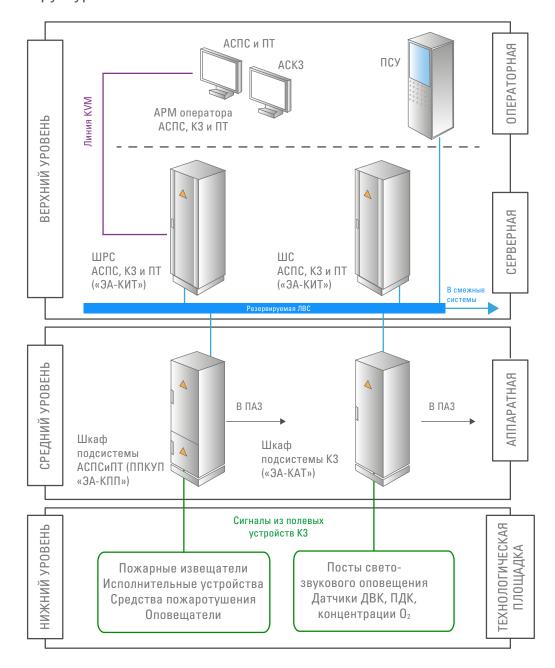
АВТОМАТИЧЕСКАЯ СИСТЕМА ПОЖАРНОЙ СИГНАЛИЗАЦИИ, КОНТРОЛЯ ЗАГАЗОВАННОСТИ И ПОЖАРОТУШЕНИЯ

Автоматическая система пожарной сигнализации, контроля загазованности и пожаротушения

(далее — АСПС, КЗ и ПТ) представляет собой программно-технический комплекс, обеспечивающий взрывопожарную безопасность защищаемого объекта.

Назначение

- автоматическое обнаружение пожара и опасной концентрации горючего газа;
- оповещение людей о пожаре и загазованности;
- формирование тревожных извещений в смежные системы;
- управление установками противопожарной защиты (водяного, пенного и газового пожаротушения, средствами противодымной защиты);
- управление инженерным оборудованием;
- предоставление оперативному персоналу информации о пожарной обстановке защищаемого объекта.


Состав

- программируемые логические контроллеры;
- устройства ввода/вывода;
- коммуникационное оборудование;
- оборудование электроснабжения;
- автоматизированное рабочее место оператора АСПС, КЗ и ПТ;
- пульт сигнализации и управления;
- дополнительное оборудование, в зависимости от объекта.

АСПС, КЗ и ПТ является проектно-компануемым решением и может дополняться по требованию заказчика.

Наименование характеристики	Значение
Напряжение питания, В	230/400 (50 Гц)
Степень защиты от внешних воздействий	не ниже IP54
Условия окружающей среды для среднего и верхнего уровней, °C	от +10 до +35
Типы сигналов	аналоговые входные 4 - 20 мА (+НАRT); дискретные входные ~230 В; дискретные входные =24 В; дискретные выходные ~230 В; дискретные выходные =24 В; дискретные выходные типа с/к (с возможностью контроля цепи); адресные линии связи; цифровые интерфейсы Ethernet, RS-485/232
Срок службы	10 лет
Гарантийный срок эксплуатации	36 месяцев

Типовая структурная схема

Сертификация

Компоненты, входящие в состав АСПС, КЗ и ПТ соответствуют требованиям Технического регламента о требованиях пожарной безопасности № 123-ФЗ, Технических регламентов ТР ТС 004/2011, ТР ТС 020/2011, СТО Газпром и имеют соответствующие сертификаты.

КОМПЬЮТЕРНЫЕ ТРЕНАЖЕРНЫЕ КОМПЛЕКСЫ

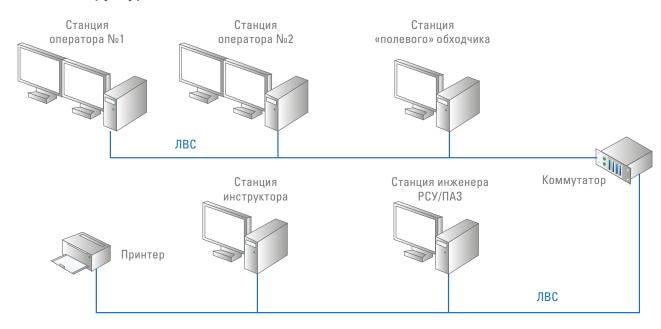
Компьютерные тренажерные комплексы (далее – КТК) представляют собой программно-вычислительный комплекс в составе нескольких персональных компьютеров, объединенных в локальную вычислительную сеть, предназначенную для обучения рабочих и инженерно-технических работников ведению технологического процесса, осуществлению пуска, плановой и аварийной остановки в типовых, нештатных ситуациях и авариях.

Назначение

КТК позволяет приобрести и отработать технологическому персоналу практические навыки:

- локализации аварийных ситуаций, возникающих как от внешних (прекращение подачи сырья, реагентов, энергоресурсов), так и от внутренних возмущений (нарушения в работе, отказы, неисправности и поломки всех видов оборудования);
- изучения влияния различных параметров процесса, внешних и внутренних возмущений на количественные показатели производства и качественные показатели продуктов;
- работы в реалистичном интерфейсе оператора распределенной системы управления (РСУ) установки;
- моделирования работы объекта в различных режимах и условиях эксплуатации.

Согласно ФНиП «Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств» на технологических объектах с блоками I и II категорий взрывоопасности все рабочие и инженерно-технические работники, непосредственно занятые ведением технологического процесса и эксплуатацией оборудования на этих объектах, обязаны пройти курс подготовки с использованием КТК.

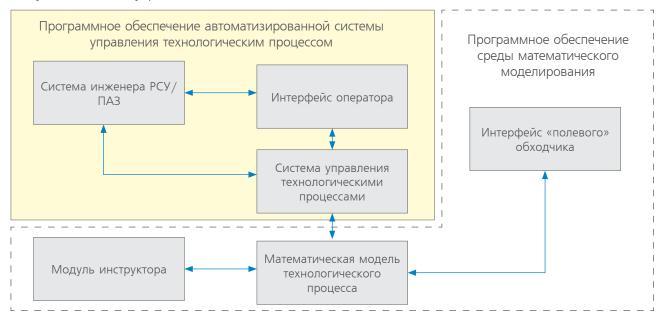

Состав

Аппаратная часть:

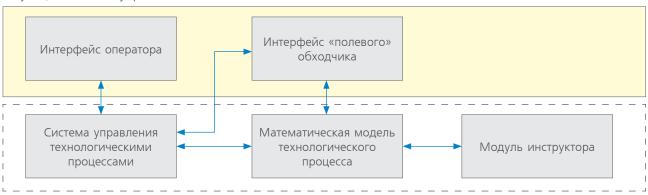
- станция инженера РСУ/ПАЗ;
- станция оператора (количество определяет заказчик, минимально 1 шт.);
- станция инструктора;

- станция «полевого» обходчика;
- принтер;
- коммутатор.

Типовая структурная схема


Программное обеспечение

Основой компьютерного тренажерного комплекса является динамическая математическая модель технологической установки, разрабатываемая на основе стандартизованных, унифицированных методов реализации функций (задач) и типовых математических методов.


Моделирование проводится с учетом термодинамических свойств потоков и материалов оборудования, механических динамических характеристик клапанов, насосов и емкостей, линейных размеров аппаратов, снятых на действующих производствах.

Варианты реализации системы управления в КТК

Симуляция системы управления

Эмуляция системы управления

Точность технологических параметров

Технологический параметр	Отклонение (значение на модели – значение в материально-тепловом балансе)
Температура, °С	+/-1
Расход, %	+/-1
Давление, %	+/-1
Лабораторные анализы (состав, молекулярный вес, плотность), %	+/-1
Время отклика, сек.	менее 1
Направление отклика	совпадает
Последовательность действий	согласно Технологическому Регламенту

СИСТЕМА ОПЕРАТИВНО-ДИСПЕТЧЕРСКОГО УПРАВЛЕНИЯ

Система оперативно-диспетчерского управления (ПТК СОДУ) предназначена для обеспечения автоматизированного контроля и управления технологическими и производственными процессами, а также предоставления диспетчерскому и производственному персоналу предметно и объектно-ориентированной информации о состоянии производства для принятия эффективных, своевременных и обоснованных решений по управлению этими процессами.

ПТК СОДУ обеспечивает:

- повышение уровня безопасности производства и обеспечение своевременного обнаружения отклонений от заданных технологических режимов;
- предупреждение и предотвращение развития аварийных и нештатных ситуаций, а также сокращение времени их локализации и последующей ликвидации;
- обеспечение надежности, эффективности контроля и защиты основного и вспомогательного технологического оборудования;
- обеспечение своевременного и эффективного выполнения установленных производственных заданий.

Состав

Система диспетчерского контроля и управления (СДКУ)

Назначение

- Автоматизированный сбор данных о ходе технологического процесса и состояния технологических объектов от автоматизированных систем предприятия.
- Информационное взаимодействие со смежными и вышестоящими информационными системами предприятия.
- Комплексный мониторинг состояния производства в режиме реального времени с использованием мнемосхем.
- Своевременное обнаружение и ликвидация отклонений от заданных технологических режимов.
- Технологический расчет в режиме реального времени.

Система поддержки принятия диспетчерских решений (СППДР)

Назначение

- Формирование плана отгрузок углеводородной продукции на основе прогнозирования хода технологического процесса.
- Обеспечение равномерной загрузки производства с соблюдением непрерывности работы технологических линий между плановыми периодами отгрузок, технического ремонта и обслуживания.

Указанные системы реализованы на едином программно-техническом комплексе.

Комплекс технических средств

Наименование	Количество
Серверный шкаф СОДУ	1
Шкаф СОДУ	1
АРМ Начальника ПДС	1
АРМ Диспетчера	2
Резервный АРМ Диспетчера	1
АРМ Инженера СОДУ	1
АРМ Энергетика	1
Система отображения коллективного пользования (видеостена)	1

Эксплуатационные характеристики технических средств СОДУ

Наименование	Количество
Температура окружающего воздуха, °С	20 ± 5
Относительная влажность окружающего воздуха, %	60 ± 15
Атмосферное давление, кПа	от 84 до 107
Запыленность воздуха в помещении, мг/м³	не более 1, при размере частиц не более 3 мкм
Напряженность внешнего электрического поля, V/m	не более 0.3
Напряженность внешнего магнитного поля, А/м	не более 5.0
Частота вибрации, Гц	не более 25, при амплитуде смещений не более 0.1 мм

Типовая структурная схема

СИСТЕМА МОНИТОРИНГА СОСТОЯНИЯ ОСНОВНОГО И ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ «ГЭС-3000»

Система МСОиВО «ГЭС-3000» предназначена для измерения параметров вибрации и вибромониторинга (виброзащиты) промышленных объектов, для измерения параметров ударных импульсов и раннего обнаружения дефектов подшипников качения, для измерения электрических параметров (ток, напряжение фазных обмоток) и мониторинга технического состояния электроприводов.

Система выполняет контроль технического состояния и диагностику	Система обеспечивает
• электроприводов путем измерения и анализа их рабочих	 мониторинг факторов, влияющих на техническое состояние промышленного оборудования;
электрических параметров (ток и напряжение фазных обмоток) (подсистема ПДЭ);	 измерение и цифровую индикацию значений вибропараметров, токовых температурных, тензометрических величин;
• отдельных узлов промышленных агрегатов путем измерения и	 хранение и архивацию измеренных и расчетных данных;
анализа параметров вибрации (подсистема ПВМ), ударных импульсов (подсистема ПДМИ),	 предоставление данных внешним информационным системам;
теплотехнических параметров (подсистема ПМТП) деформации	 автоматизированное диагностирование типовых неисправностей динамического оборудования;
и напряжения (подсистема ПМДН).	• обслуживание диагностируемого оборудования по фактическому техническому состоянию (ФТС)

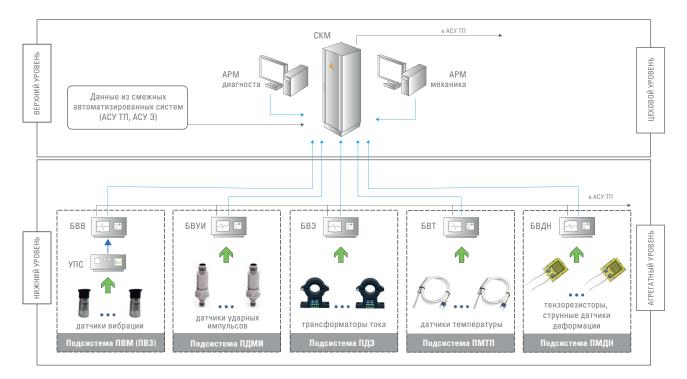
Наименование характеристики	Значение
Общие сведения	
Тип корпусов для модулей системы	Монтажный шкаф
Габаритные размеры корпусов модулей системы, мм, не более: исполнение в виде настенного шкафа исполнение в виде напольного шкафа	800x500x400 2200x800x800
Масса входящих в состав системы подсистем, кг, не более	60
Степень защиты корпусов по ГОСТ 14254 -2015 (IEC 60529:2013), не ниже	IP54
Режим работы	Круглосуточный
Время установления рабочего режима после подачи напряжения питания, мин., не более	5
Характеристики питания	
Напряжение питания постоянного тока, В	от 21,6 до 26,4 (номинальное 24)
Напряжение питания переменного тока, В	от 187 до 242 (номинальное 220)

Метрологические характеристики подсистемы ПВМ (ПВ3)

Наименование характеристики	Значение
Каналы измерения вибрации	
Количество каналов измерения вибрации	до 24
Каналы измерения абсолютной вибрации	
Диапазон измерений СКЗ виброскорости, мм/с	от 0,5 до 50
Диапазон измерений СКЗ виброперемещения, мкм	от 5 до 500
Диапазон измерений СКЗ виброускорения, м/с²	от 1 до 100
Диапазон рабочих частот, Гц	от 10 до 1000; от 2 до 1000
Пределы допускаемой основной относительной погрешности измерения СКЗ виброскорости в диапазоне частот 10—1000 Гц, %	±10
Пределы допускаемой основной относительной погрешности измерения СКЗ виброскорости (виброперемещения, виброускорения) в диапазоне частот 2—1000 Гц, %	±10
Неравномерность АЧХ относительно базовой частоты 80 Гц при измерении СКЗ виброскорости в диапазоне частот 10—1000 Гц, %, не более	±10
Каналы измерения относительной вибрации	
Диапазон измерений размаха виброперемещения (пик-пик), мкм	от 10 до 160, от 20 до 250, от 20 до 320, от 200 до 500
Нормируемый по неравномерности диапазон частот преобразования размаха относительного виброперемещения, Гц	от 10 до 1000
Пределы допускаемой основной относительной погрешности измерений размаха (пик-пик) виброперемещения, %	±12
Неравномерность АЧХ относительно базовой частоты 80 Гц при измерении размаха (пик-пик) виброперемещения, %, не более	±10
Каналы измерения осевого сдвига (линейных перемещений)	
Диапазон измерений осевого сдвига, мм	от 0,3 до 2,5, 0,5 до 4,5
Пределы допускаемой основной приведенной погрешности измерения осевого сдвига, %	± 6
Каналы измерения частоты вращения	
Диапазон измерения частоты вращения, Гц	от 1 до 300
Пределы допускаемой основной относительной погрешности измерения частоты вращения, %	± 0,1
Интерфейс связи Ethernet 100Base-T	
Количество интерфейсов, не менее	1
Гальваническая развязка	есть
Электрическая прочность развязки, В	2000
Длина кабеля линии связи, м, не более	100
Тип рекомендуемого кабеля	4 витых пары категории 5
Скорости передачи данных, Мбит/с	10, 100

Метрологические характеристики подсистемы ПДЭ

Наименование характеристики	Значение	
Каналы измерения среднеквадратического значения напряжения переменного тока		
Количество каналов измерения вибрации	до 24	
Типы подключаемых первичных преобразователей	встроен в контроллер	
Диапазон измерений среднеквадратического значения напряжения переменного тока, В	от 0 до 1000	
Пределы допускаемой основной приведенной погрешности измерения среднеквадратического значения напряжения переменного тока, %	±3	
Каналы измерения среднеквадратического значения силы переменного тока		
Количество каналов измерения	до 24	
Диапазоны измерений среднеквадратического значения силы переменного тока, A	от 0 до 50; от 51 до 250; от 251 до 1000	
Пределы допускаемой основной приведенной погрешности измерения среднеквадратического значения силы переменного тока, %	±5	


Метрологические характеристики подсистемы ПДМИ

Наименование характеристики	Значение
Каналы измерения амплитуды ударных импульсов	
Количество каналов измерения	до 32
Диапазон измерения амплитуды ударных импульсов, dBsv	от -19 до +99
Пределы допускаемой основной абсолютной погрешности измерения амплитуды ударных импульсов, dBsv	±3

Метрологические характеристики подсистемы ПМТП

Наименование характеристики	Значение
Каналы измерения температуры	
Количество каналов измерения	до 32
Диапазон измерения температуры, °С	от -60 до +200
Пределы допускаемой основной приведенной погрешности измерения температуры, %	±2

Типовая структурная схема

ПВЗ – подсистема виброзащиты

ПВМ – подсистема вибромониторинга

ПДМИ – подсистема мониторинга методом ударных импульсов

ПДЭ – подсистема мониторинга электрических параметров

ПМТП – подсистема мониторинга теплотехнических параметров

ПМДН – подсистема мониторинга деформаций и напряжений

ТСА – сетевое оборудование агрегатного уровня

ТСЦ – сетевое оборудование цехового уровня

БВВ – блок вычислительной подсистемы вибромониторинга

БВУИ – блок вычислительной подсистемы мониторинга ударных импульсов

БВЭ – блок вычислительной подсистемы мониторинга электропараметров

БВТ – блок вычислительной подсистемы мониторинга температурных параметров

БВДН – блок вычислительной подсистемы мониторинга деформаций и напряжений

УПС – устройство преобразования и согласования сигналов

СКМ – сервер комплексного мониторинга

Сертификация

Сертификат соответствия требованиям Технического регламента ЕАС

Свидетельство об утверждении типа средств измерений

КОМПЛЕКС АНАЛИЗА ПРОМЫШЛЕННЫХ ВЫБРОСОВ «АСКВГ/ПЭК-3000»

Комплекс анализа промышленных выбросов «АСКВГ/ПЭК-3000» предназначен для измерения концентраций вредных (загрязняющих) веществ и сопутствующих параметров потока дымовых и выхлопных газов, а также определения валовых выбросов вредных (загрязняющих) веществ.

Назначение

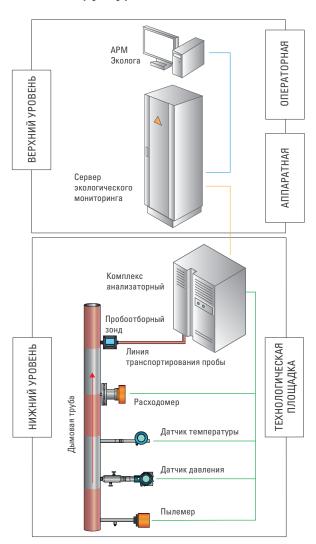
Оснащение источников выбросов средствами измерения и учета показателей выбросов и сбросов вредных загрязняющих веществ во исполнение 7-Ф3 «Об охране окружающей среды» с последними изменениями, вносимыми 252-Ф3 от 27.07.2018, Постановлениями Правительства РФ № 263, 262 от 13.03.2019 и Распоряжением Правительства РФ № 428 от 13.03.2019.

Состав

- установка подготовки пробы, размещаемая в климатическом шкафу;
- аналитический блок, размещаемый в климатическом шкафу;
- расходомер;

- датчики давления и температуры;
- анализатор взвешенных частиц;
- пробоотборный зонд;
- автоматизированное рабочее место;
- сервер (опционально).

Метрологические характеристики


Измеряемый параметр	Диапазон измерений	Пределы приведенной погрешности, %
Концентрация SO _{2,} мг/м³	от 0 до 5000	±6
Концентрация NO, мг/м³	от 0 до 1000	±8
Концентрация NO _{2,} мг/м³	от 0 до 750	±8
Концентрация СО, мг/м³	от 0 до 750	±6
Концентрация CO _{2,} % об.	от 0 до 20	±6
Концентрация О₂, % об.	от 0 до 25	±4
Концентрация взвешенных частиц, мг/м³	0-10000	±25
Концентрация паров воды, % об.	от 0 до 30	±20
Скорость газового потока, м/с	от 0,3 до 120	±3
Объемный расход, м³/ч	от 7,2•10 ² до 43•10 ⁶	±5
Диаметр газохода, м	0,14 - 11,3	-
Абсолютное давление, кПа	от 50 до 150	±0,5
Температура, °C	от -50 до +1300	±2,5

Наименование характеристики	Значение
Напряжение питания от сети переменного тока частотой (50±1) Гц, В	380±10%
Потребляемая мощность комплекса, кВт, не более	5,5
Степень защиты от внешних воздействий по ГОСТ 14254-2015 для элементов комплекс	OB:
Расходомеры	IP65
Пылемер, зонд отбора пробы	IP54
Климатический шкаф	IP54

Эксплуатационные характеристики

Наименование характеристики	Значение
Условия окружающей среды:	
Диапазон температуры, °С	от -60 до +50
Диапазон атмосферного давления, кПа	от 84 до 106,7
Относительная влажность (при температуре +35 °C и (или) более низких температурах (без конденсации влаги), %, не более	95
Условия эксплуатации (внутри обогреваемых шкафов):	
Диапазон температуры, °С	от +15 до +30
Диапазон атмосферного давления, кПа	от 84 до 106,7
Относительная влажность (без конденсации влаги), %, не более	95
Параметры анализируемого газа	
Температура, °C, не более	+1300
Объемная доля паров воды (при температуре не более + 200 °C, без конденсации влаги), %, не более	30
Диапазон температуры обогрева пробоотборного зонда с линией пробы, °C	от +110 до +180
Габаритные размеры (ВхШхГ), мм, не более	2300x1700x1700
Масса, кг, не более	550

Типовая структурная схема

Сертификация

Комплекс анализа промышленных выбросов «АСКВГ/ПЭК-3000» соответствует требованиям ТР ТС 012/2011 «О безопасности оборудования для работы во взрывоопасных средах» и ТР ТС 020/2011 «Электромагнитная совместимость технических средств».

Комплекс анализа промышленных выбросов «АСКВГ/ПЭК-3000» прошел метрологическую сертификацию и является зарегистрированным средством измерения.

КОМПЛЕКС АНАЛИЗАТОРНЫЙ АТМОСФЕРНЫХ ПАРАМЕТРОВ «АСАП/ПЭК-3000»

Комплекс анализаторный атмосферных параметров «АСАП/ПЭК-3000» предназначен для автоматического измерения содержания загрязняющих веществ в атмосферном воздухе, его температуры, влажности, давления и других параметров.

«АСАП/ПЭК-3000» позволяет:

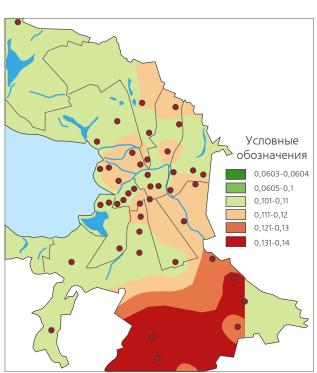
- автоматически измерять контролируемые параметры (скорость и направление ветра, влажность и температура снаружи и внутри поста, атмосферное давление, газовый состав воздуха, количество осадков) и управлять измерительным процессом;
- автоматически передавать результаты измерений по каналам связи, в том числе и на метрологические пункты;
- масштабировать поле получаемых параметров на ситуационной карте или мнемосхеме.

Единая система промышленного экологического контроля объединяет анализаторные комплексы в единое информационное пространство экологического и производственного наблюдения и включает в себя средства фиксации и передачи информации о показателях выбросов загрязняющих веществ в государственный реестр объектов, оказывающих негативное воздействие на окружающую среду.

Метрологические характеристики

Измеряемый параметр	Диапазон измерений	Пределы приведенной погрешности, %
Концентрация SO ₂ , мг/м³	от 0 до 30	±25
Концентрация NO, мг/м³	от 0 до 13,5	±25
Концентрация NO₂, мг/м³	от 0 до 20	±25
Концентрация СО, мг/м³	от 0 до 62	±25
Концентрация CO ₂ , мг/м³	от 0 до 4000	±6
Концентрация H₂S % об.	от 0 до 8	±25
Концентрация О ₃ , мг/м³	0-10	±20
Концентрация СН ₄ , мг/м³	от 0 до 500	±20
Скорость воздушного потока, м/с	от 0 до 60	±5
Направление потока, градус	от 0 до 360	±6 (абс.)
Относительная влажность воздуха, %	1 - 100	±5
Абсолютное давление, кПа	от 54 до 110	±1 (абс.)
Температура, °С	от -45 до +60	±0,7 (абс.)

Наименование характеристики	Значение
Напряжение питания от сети переменного тока частотой (50 ± 1) Гц, В	380±10%
Потребляемая мощность комплекса, кВт, не более	5,5


Эксплуатационные характеристики

Наименование характеристики	Значение	
Условия окружающей среды:		
Диапазон температуры, °С	от -60 до +50	
Диапазон атмосферного давления, кПа	от 84 до 106,7	
Относительная влажность (при температуре +35 °C и (или) более низких температурах (без конденсации влаги)), %, не более	95	
Условия эксплуатации (внутри обогреваемых шкафов):		
Диапазон температуры, °С	от +15 до +30	
Диапазон атмосферного давления, кПа	от 84 до 106,7	
Относительная влажность (без конденсации влаги), %, не более	95	
Массогабаритные параметры		
Габаритные размеры (ВхШхГ), мм, не более	2800x2500x8000	
Масса, кг, не более	1000	

Типовая структурная схема

АРМ Зколога Сервер зкологического мониторинга Комплекс анализаторный веществ Комплекс анализаторный веществ Комплекс анализаторный веществ

Ситуационная карта с отображением поля получаемых параметров

Сервер консолидирует информацию, поступающую от всех аналитических комплексов, формирует базу данных и осуществляет обработку информации с передачей мнемосхем на APM.

КОМПЛЕКС АНАЛИЗАТОРНЫЙ ПРОМЫШЛЕННЫХ СБРОСОВ «АСКСВ/ПЭК-3000»

Комплекс анализа промышленных сбросов «АСКСВ/ПЭК-3000» предназначен для измерения концентраций вредных (загрязняющих) веществ и сопутствующих параметров потока сточных вод, а также определения валовых сбросов вредных (загрязняющих) веществ.

Назначение

Оснащение источников сбросов вредных загрязняющих веществ средствами измерения и учета показателей сбросов во исполнение 7-Ф3 «Об охране окружающей среды» с последними изменениями, вносимыми 252-Ф3 от 27.07.2018, Постановлениями Правительства РФ № 263, 262 от 13.03.2019 и Распоряжением Правительства РФ № 428 от 13.03.2019.

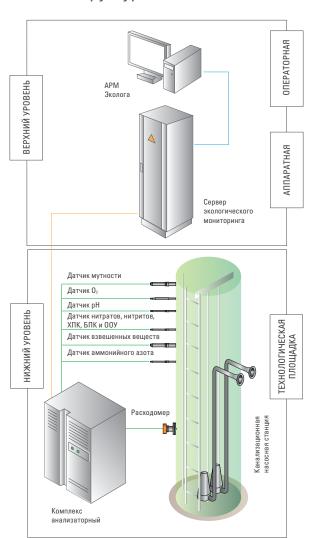
Состав

- аналитический блок, размещаемый в климатическом шкафу;
- расходомер;

- полевые датчики;
- автоматизированное рабочее место;
- сервер (опционально).

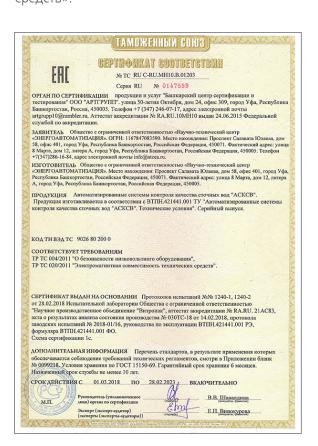
Метрологические характеристики

Измеряемый параметр	Диапазон измерений	Пределы приведенной погрешности, %
рН	от 0 до 14	±0,1 (aбc.)
Концентрация нитратного азота, мг/л	от 0,05 до 1000	±0,05 + 0,05⋅C (aбc.)
Концентрация нитритного азота, мг/л	от 0,05 до 80	±0,05 + 0,05⋅C (aбc.)
Концентрация аммонийного азота, мг/л	от 0,2 до 1000	±0,05 + 0,05⋅C (aбc.)
Концентрация ортофосфатов, мг/л	от 0,15 до 150	±0,05 + 0,05⋅C (aбc.)
Концентрация растворенного O_2 , % мас.	от 0,4 до 20	±10
Концентрация общего органического углерода, г/л	от 0,05 до 20	±0,2∙C (a6c.)
Концентрация взвешенных частиц, мг/л	0,1-100000	±10
Мутность	от 0 до 4000	±10
Химическое потребление кислорода, мг/л	От 1 до 10000	±20
Объемный расход, м³/ч	от 0 до 2000	±0,5
Массовая концентрация БПК, мг/л	1 - 8000	±20
Удельная электрическая проводимость, мСм/см	От 6 до 20	±3
Температура, °С	От -5 до +105	±1 (абс.)


Наименование характеристики	Значение	
Напряжение питания от сети переменного тока частотой (50±1) Гц, В	380±10%	
Потребляемая мощность комплекса, кВт, не более	5	
Степень защиты от внешних воздействий по ГОСТ 14254-2015 для элементов комплексов:		
Расходомеры	IP68	
Датчики	IP68	
Климатический шкаф	IP54	

Эксплуатационные характеристики

Наименование характеристики	Значение
Условия окружающей среды:	
Диапазон температуры, °С	от -60 до +50
Диапазон атмосферного давления, кПа	от 84 до 106,7
Относительная влажность (при температуре +35 °C и (или) более низких температурах (без конденсации влаги)), %, не более	95
Условия эксплуатации (внутри обогреваемых шкафов):	
Диапазон температуры, °С	от +15 до +30
Диапазон атмосферного давления, кПа	от 84 до 106,7
Относительная влажность (без конденсации влаги), %, не более	95
Параметры анализируемой среды и массогабаритные характеристики	
Температура, °C	от 2 до 60
Габаритные размеры (ВхШхГ), мм, не более	2300x1700x1700
Масса, кг, не более	550


Система подходит для размещения как на трубопроводах, расположенных под открытым небом, в насосных станциях, в смотровых колодцах, так и на открытых резервуарах и аэротенках.

Типовая структурная схема

Сертификация

Комплекс анализа промышленных сбросов «АСКСВ/ПЭК-3000» соответствует требованиям ТР ТС 004/2011 «О безопасности низковольтного оборудования» и ТР ТС 020/2011 «Электромагнитная совместимость технических средств».

АНАЛИЗАТОРНЫЙ КОМПЛЕКС ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ «АКДНП»

Анализаторный комплекс давления насыщенных паров «АКДНП» — это комплекс, предназначенный для непрерывных циклических измерений давления насыщенных паров нефти и нефтепродуктов непосредственно в трубопроводе или технологической линии.

Комплекс представляет собой стационарную автоматизированную установку, подключенную к потоку продукта через фланцевое соединение пробоотборного устройства. Установка подготовки пробы (УПП) производит подготовку пробы для проведения измерений. Установка анализа пробы (УАП) проводит измерения параметров подготовленной пробы. Измеренная проба накапливается в емкость, после чего возвращается в поток дренажными насосами.

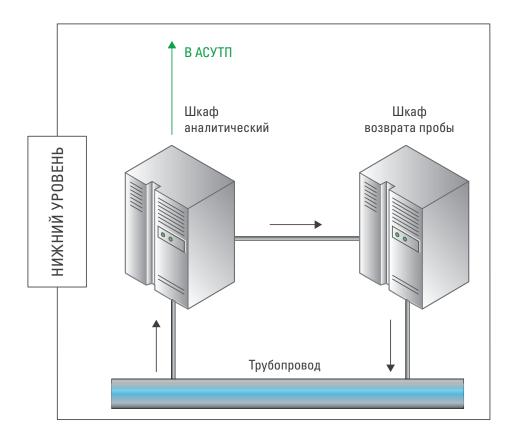
Состав

- установки подготовки пробы (УПП);
- установки анализа пробы (УАП).

В УПП содержатся емкость сбора и возврата пробы, устройство пробообогрева, дренажные насосы.

В УАП содержатся анализатор давления насыщенных паров и устройство пробообогрева.

Анализаторный комплекс давления насыщенных паров «АКДНП» производит измерения, основанные на стабилизации и точном измерении температуры пробы.


Принцип работы анализаторного комплекса заключается в измерении парциального давления насыщенного пара, который находится в термодинамическом равновесии с жидкой фазой пробы нефти, нефтепродукта, углеводородной жидкости.

Метрологические характеристики

Наименование характеристики	Значение
Диапазон показаний давления насыщенных паров, кПа	от 7 до 1000
Диапазон измерений давления насыщенных паров, кПа	от 8 до 115
Пределы допускаемой относительной погрешности измерений, % • в диапазоне от 8 до 12 кПа • в остальном диапазоне измерений	±10 ±5
Диапазон показаний температуры, °С	от 0 до +50
Соотношение объемов пар–жидкость	4:1

Наименование характеристики	Значение
Потребляемая мощность, Вт, не более	4500
Номинальное напряжение питающей сети, В	400±10
Частота питающей сети, Гц	50±0,5
Степень защиты от воздействий окружающей среды компонентов	IP54
Диапазон температур окружающей среды, °С • внутри шкафа • снаружи шкафа	не ниже +5 от -60 до +60
Время прогрева УАП, мин.	не более 120


Типовая структурная схема

Сертификация

Анализаторный комплекс давления насыщенных паров «АКДНП» соответствует требованиям Технических регламентов Таможенного союза «О безопасности оборудования для работы во взрывоопасных средах» (ТР ТС 012/2011), «О безопасности низковольтного оборудования» (ТР ТС 004/2011) и «Электромагнитная совместимость технических средств» (ТР ТС 020/2011).

АВТОМАТИЗИРОВАННАЯ СИСТЕМА КОНТРОЛЯ КИСЛОРОДА В ДЫМОВЫХ И ВЫХЛОПНЫХ ГАЗАХ «ОКСИ-ЭА»

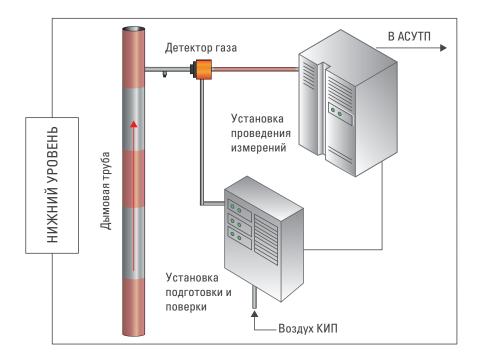
«ОКСИ-ЭА» — это система, предназначенная для прямого измерения и контроля концентраций кислорода в составе дымовых и выхлопных газов без извлечения пробы, формирования аналоговых и цифровых сигналов, пропорциональных текущим значениям, дискретных сигналов, соответствующих предельным значениям кислорода.

Состав

- детектор газа (ДГ);
- установка подготовки и поверки (УПП);
- установка проведения измерений (УПИ).

ДГ газа представляет собой зонд со встроенным циркониевым датчиком в погружной части и предназначен для размещения в технологическом процессе.

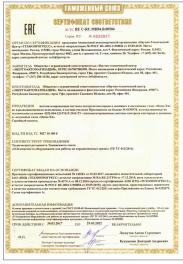
УПП предназначена для подготовки, подачи воздуха сравнения и поверочной газовой смеси в ДГ, состоит из пневматической линии транспортировки воздуха и газовой смеси, фильтрующих элементов, редукторов, регуляторов расхода, электромагнитных клапанов для автоматической калибровки.


УПИ состоит из газоаналитического и вспомогательного оборудования.

Метрологические характеристики

Наименование характеристики	Значение
Предел допускаемой основной приведенной погрешности измерения O_2 , %	± 2
Пределы измерений минимальных и максимальных концентраций: от 0,015 до 5100 об., %	от 0,015 до 5100
Воспроизводимость, %	±0,5
Температура измеряемой среды, °С	0600
Давление измеряемой среды, кПа	± 5

Наименование характеристики	Значение
Рабочий диапазон температур, °С	от -60 до +55
Длина погружной части детектора, м	0,4; 1,0; 1,5; 2,0
Входное давление воздуха КИП, МПа	от 0,1 до 0,6
Выходное давление воздуха, кПа	от 50 до 100
Расход воздуха, л/ч	от 10 до 100


Типовая структурная схема

Сертификация

Автоматизированная система контроля кислорода в дымовых и выхлопных газах «Окси-ЭА» соответствует требованиям Технического регламента Таможенного союза «О безопасности оборудования для работы во взрывоопасных средах» (ТР ТС 012/2011), «Электромагнитная совместимость технических средств» (ТР ТС 020/2011).

АНАЛИЗАТОРНЫЙ КОМПЛЕКС ОПРЕДЕЛЕНИЯ КАЧЕСТВЕННОГО СОСТАВА ГАЗА

Анализаторные комплексы предназначены для непрерывного определения компонентного состава различных углеводородных газов с возможностью определения влажности, температуры точек росы, содержания общей серы, сероводорода, углекислого газа, ртути, метанола, азота, кислорода и иных веществ в зависимости от требований заказчика.

Назначение

- контроль технологических процессов для газовых и газохимических производств, в том числе для анализа СПГ и СУГ;
- контроль технологических процессов химических и нефтехимических производств;
- контроль технологических процессов для нефтедобывающих и нефтеперерабатывающих производств;
- контроль качественных характеристик и компонентного состава газа для коммерческих и оперативных ГИС.

Состав

Анализаторные комплексы могут поставляться как в шкафном, так и в блочно-модульном исполнении в зависимости от комплектации, условий эксплуатации и параметров анализируемого потока. Возможно изготовление анализаторных комплексов с любым необходимым количеством анализируемых потоков.

Анализаторные комплексы оснащаются системами отбора, доставки и подготовки проб, спроектированными с целью сохранения их максимальной репрезентативности, на основе опыта и комплектующих ведущих мировых производителей (Swagelock, Dk-lok, Tescom и пр.).

Технические характеристики

Принципы измерения аналитического оборудования, входящего в состав комплексов, основаны на высокоселективных методах (газовой хроматографии, спектрометрии) и позволяют измерять концентрации веществ до миллионных (ppm) и миллиардных долей (ppb).

Анализаторный комплекс передает результаты измерений состава газа и параметры состояния анализаторов и инженерного оборудования в АСУ ТП верхнего уровня по протоколам Modbus TCP, Modbus RTU, с помощью интерфейса «токовая петля». Возможна полная интеграция анализаторного комплекса в существующие на производственной площадке системы РСУ и ПАЗ.

Максимальные габариты комплексов шкафного исполнения

ШхВхГ, мм	не более 2500x2500x3500
Масса, кг	не более 1000

Максимальные габариты комплексов блочно-модульного исполнения

ШхВхГ, мм	не более 12000х3500х3500
Масса, кг	не более 15000

Электропитание

Потребляемая электрическая мощность анализаторного комплекса при максимальной комплектации, кВт	Не превышает 50 при напряжении 380 В, 50 Гц
Потребляемая электрическая мощность анализаторного комплекса в шкафном исполнении, кВт	Не превышает 5 т при напряжении 380 В, 50 Гц

Метрологические характеристики

Наименование характеристики	Значение
Диапазоны измерений содержания ртути (монитор ртути на основе атомно-абсорбционной спектрометрии ААС), нг/м³	10120000
Диапазоны измерений показателя влажности (анализатор влажности на основе кварцевых микровесов QCM), ppb/ppm	20-5
Диапазоны измерений содержания кислорода (анализатор на основе циркониевой ячейки), ppm	0-10 0-100 0-1000 0-1% 0-25%
Диапазоны измерений компонентного состава (хроматографический метод анализа) N_2 , % (моль) C_{14} , % (моль) $C_{2}H_{6}$, % (моль) $C_{3}H_{8}$, % (моль) $C_{4}H_{10}$, % (моль) $C_{5}H_{12}$, % (моль) $C_{5}H_{12}$, % (моль) $C_{6}H_{12}$, % (моль)	03 0 100 010 05 02 00,5 01 050,00 0500,00 ppm 00,10 020
Общая сера, ppm	0100,00

Сертификация

Анализаторные комплексы соответствуют требованию ТР ТС 012/2011 «О безопасности оборудования для работы во взрывоопасных средах».

СИСТЕМА ИЗМЕРЕНИЯ КОЛИЧЕСТВА И ПОКАЗАТЕЛЕЙ КАЧЕСТВА НЕФТИ И НЕФТЕПРОДУКТОВ

Система измерения количества и показателей качества нефти и нефтепродуктов (далее – СИКН/СИКНП) предназначена для автоматизированных измерений объемов, массы и параметров качества, компонентного состава перекачиваемой нефти и нефтепродуктов при проведении расчетных операций между поставщиком и принимающей стороной.

Система осуществляет измерения в автоматическом режиме и с требуемой точностью следующих технологических параметров:

- массового и объемного расхода нефтепродуктов по каждой измерительной линии и системе измерения в целом;
- температуры в каждой измерительной линии, блоке измерения параметров качества и системе измерения в целом;
- давления в каждой измерительной линии, блоке измерения параметров качества и системе измерения в целом;
- плотности;
- объемной и массовой доли воды;
- вязкости.

Пределы допускаемой относительной погрешности измерений массы брутто среды на узлах коммерческого учета составляют – 0,25%.

Состав

- технологический блок;
- блок сбора и обработки информации.

Метрологические характеристики

Наименование характеристики	Значение
Температура измеряемой среды, °С	от -50 до +100
Максимальное давление среды, МПа	10
Измеряемая среда	Товарная нефть (по ГОСТ Р 51858-2002)
Метод измерений	Косвенный метод динамических измерений массы (ГОСТ Р 8.595-2004)

Наименование характеристики	Значение
Напряжение питания от сети переменного тока частотой (50±1) Гц, В	380±10%
Степень защиты от внешних воздействий по ГОСТ 14254-2015	IP54
Режим работы СИКН	Непрерывный, круглогодичный
Режим управления: • основной запорной арматурой резервной топливно-пусковой ИЛ • остальной запорной арматурой	Автоматизированный Ручной
Измерение, индикация и автоматическое обновление данных измерения и расчетов текущего значения расхода за отчетный период по каждой измерительной линии, суммарного расхода нефти через СИКН	Да
Измерение в автоматическом режиме, индикация значений и сигнализация предельных значений давления и температуры на ИЛ, в БИК и на выходе СИКН	Да

Технические характеристики

Наименование характеристики	Значение
Измерение в автоматическом режиме, индикация значений и сигнализация предельных значений объемной доли воды	Да
Измерение в автоматическом режиме, индикация значений и сигнализация предельных значений перепада давления на фильтрах	Да
Вычисление объема сырой нефти и массы брутто/нетто нефти	Да
Вычисление, накопление, хранение и отображение на мониторе автоматизированного рабочего места (APM) оператора значений количества перекаченной нефти за отдельные периоды (2 часа, смена 12 часов, сутки, месяц, год)	Да
Контроль метрологических характеристик (МХ) рабочих преобразователей расхода (ПР) по контрольному значению, поверка преобразователей расхода по передвижной поверочной установке (ПУ), формирование и печать протоколов поверки и контроля МХ ПР	Да
Контроль МХ рабочих ПР по контрольному, поверка ПР по передвижной ПУ, формирование и печать протоколов поверки и контроля МХ ПР	Да
Автоматическое управление отбором объединенной пробы, автоматический отбор объединенной пробы пропорционально объему перекачиваемой нефти за смену/ сутки	Да
Ручной отбор точечной пробы	Да
Контроль безопасности по загазованности и предельной температуре в помещении СИКН	Да
Учет и формирование журнала событий СИКН	Да
Отбор пробы в соответствии с ГОСТ 2517-2012	Да
Измерение остаточного содержания свободного газа	Да, предусмотреть место для подключения УОСГ
Измерение содержания растворенного газа	Да, предусмотреть место для подключения УОСГ-РГ
Поверка преобразователей расхода на месте эксплуатации	Да
Фильтрация измеряемой среды и очистки фильтров	Да
Дистанционное управление запорной арматурой, автоматизированное управление технологическим оборудованием	Да
Контроль герметичности запорной арматуры, перетоки нефти через которую могут повлиять на результаты измерений или контроля метрологических характеристик ПР	Да
Пломбирование запорной арматуры, открытие которой приводит к изменению результатов измерений	Да
Вычисление массы нетто при вводе с клавиатуры APM оператора значений массовой доли воды, массовой концентрации хлористых солей и массовой доли механических примесей, определенных в испытательной лаборатории	Да

Эксплуатационные характеристики

Наименование характеристики	Значение
Условия окружающей среды: • диапазон температуры, °С	от -60 до +40
Условия эксплуатации (внутри помещения): • диапазон температуры, °С	от +5 до +40
Исполнение «ЭА-БТ» по ГОСТ 15150	УХЛ1
Климатическая зона (СП 131.13330.2012)	IIIA
Класс взрывоопасной зоны по ПУЭ: • блочно-модульное здание «ЭА-БТ» • открытая площадка	В-1а В-1г

Сертификация

Система измерения количества и показателей качества нефти и нефтепродуктов соответствует требованиям Технического регламента Таможенного союза «О безопасности оборудования для работы во взрывоопасных средах» (ТР ТС 012/2011).

СИСТЕМА ИЗМЕРЕНИЯ КОЛИЧЕСТВА И ПОКАЗАТЕЛЕЙ КАЧЕСТВА ВОДЫ

Система измерения количества и показателей качества воды предназначена для автоматизированного измерения количества воды, закачиваемой в скважину на нефтяном месторождении для поддержания пластового давления, а также используемой на собственные нужды.

Система осуществляет измерения в автоматическом режиме и требуемой точностью следующих технологических параметров:

- измеряет расход и контролирует параметры давления, температуры воды с последующей передачей в систему обработки информации;
- количество и диаметр измерительных линий определяется расчетным путем в зависимости от максимального расхода и типа применяемых преобразователей расхода.

Состав

- технологический блок;
- блок сбора и обработки информации.

Метрологические характеристики

Наименование характеристики	Значение
Температура измеряемой среды, °С	От -40 до 100
Максимальное давление среды, МПа	4
Предел допускаемой относительной погрешности объемного расхода и объема, %	± 0,25; ± 0,5; ±1

Технические характеристики

Наименование характеристики	Значение
Напряжение питания от сети переменного тока частотой (50 \pm 1) Гц, В	380 ±10%
Степень защиты от внешних воздействий по ГОСТ 14254-2015	IP54
Режим работы СИКГ	Непрерывный, круглогодичный
Режим управления: • основной запорной арматурой резервной топливно-пусковой ИЛ • остальной запорной арматурой	Автоматизированный Ручной
Диапазоны диаметров, мм	151000

Эксплуатационные характеристики

Наименование характеристики	Значение
Условия окружающей среды: диапазон температуры, °C	от -60 до +40
Условия эксплуатации (внутри помещения): диапазон температуры, °C	от +5 до +40
Исполнение «ЭА-БТ» по ГОСТ 15150	ХЛ1
Класс взрывоопасной зоны по ПУЭ: • блочно-модульное здание «ЭА-БТ» • открытая площадка	В-1а В-1г

Сертификация

Система измерения количества и показателей качества воды соответствует требованиям Технического регламента Таможенного союза «О безопасности оборудования для работы во взрывоопасных средах» (ТР TC 012/2011).

СИСТЕМА ИЗМЕРЕНИЯ КОЛИЧЕСТВА И ПОКАЗАТЕЛЕЙ КАЧЕСТВА ГАЗА

Система измерения количества и показателей качества газа (далее – СИКГ) предназначена для автоматизированного учета и определения компонентного состава природного и свободного нефтяного газа при хранении, транспортировке, переработке, а также при проведении расчетно-учетных операций.

Система осуществляет измерения в автоматическом режиме и требуемой точностью следующих технологических параметров:

- массового и объемного расхода нефтепродуктов по каждой измерительной линии и системе измерения в целом;
- температуры в каждой измерительной линии, блоке измерения параметров качества и системе измерения в целом;
- давления в каждой измерительной линии, блоке измерения параметров качества и системе измерения в целом;
- плотности;
- компонентного состава;
- температуры точек росы по воде и углеводородам.

Пределы допускаемой относительной погрешности измерения объема – от 0,8 %.

Состав

- технологический блок;
- блок сбора и обработки информации.

Метрологические характеристики

Наименование характеристики	Значение			
Температура измеряемой среды, °С от -50 до				
Максимальное давление среды, МПа	10			
Объемный расход газа через СИКГ, приведенный к стандартным условиям, г	и³/ч			
Минимальный через рабочую или резервную ИЛ	15000			
Максимальный через рабочую или резервную ИЛ	639000			
Минимальный через резервную топливно-пусковую ИЛ	3000			
Максимальный через резервную топливно-пусковую ИЛ	53000			
Объемный расход газа через СИКГ при рабочих условиях, м³/ч				
Минимальный через рабочую или резервную ИЛ	120			
Максимальный через рабочую или резервную ИЛ	5200			
Минимальный через резервную топливно-пусковую ИЛ	25			
Максимальный через резервную топливно-пусковую ИЛ	430			

Технические характеристики

Наименование характеристики	Значение
Напряжение питания от сети переменного тока частотой (50±1) Гц, В	380±10%
Степень защиты от внешних воздействий по ГОСТ 14254-2015	IP54
Режим работы СИКГ	Непрерывный, круглогодичный
Режим управления:	Автоматизированный Ручной
Измерение, индикация и автоматическое обновление данных измерения и расчетов текущего значения расхода за отчетный период по каждой измерительной линии, суммарного расхода нефти через СИКГ	Да
Измерение в автоматическом режиме, индикация значений и сигнализация предельных значений давления и температуры на ИЛ	Да
Вычисление, накопление, хранение и отображение на мониторе автоматизированного рабочего места (APM) оператора значений количества перекаченного газа за отдельные периоды (2 часа, смена 12 часов, сутки, месяц, год)	Да
Ручной отбор точечной пробы	Да
Учет и формирование журнала событий СИКГ	Да
Контроль герметичности запорной арматуры, перетоки газа через которую могут повлиять на результаты измерений	Да
Пломбирование запорной арматуры, открытие которой приводит к изменению результатов измерений	Да

Эксплуатационные характеристики

Наименование характеристики	Значение
Условия окружающей среды: • диапазон температуры, °С	от -60 до +40
Условия эксплуатации (внутри помещения): • диапазон температуры, °С	от +5 до +40
Исполнение «ЭА-БТ» по ГОСТ 15150	ХЛ1

Сертификация

Система измерения количества и показателей качества газа соответствует требованиям Технического регламента Таможенного союза «О безопасности оборудования для работы во взрывоопасных средах» (ТР ТС 012/2011).

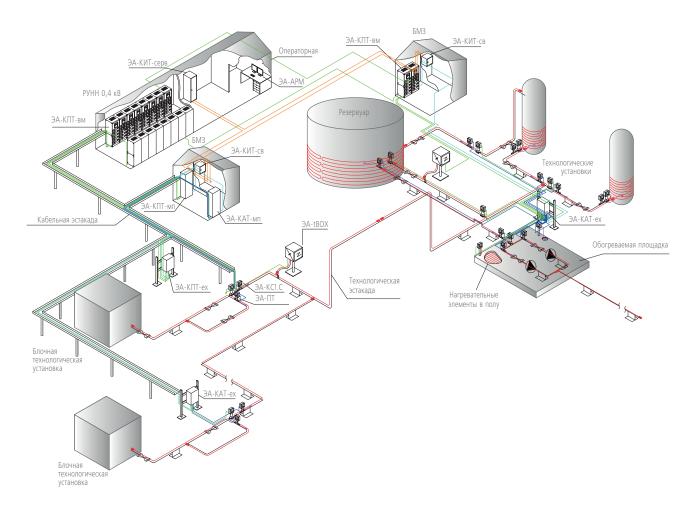
СИСТЕМА ПРОМЫШЛЕННОГО ЭЛЕКТРООБОГРЕВА «ЭА-ТЕРМ»

«ЭА-ТЕРМ» представляет собой систему оптимально подобранных компонентов для организации электрообогрева на объектах нефтегазовой, нефтехимической промышленности и в промышленном производстве.

Назначение

- обогрев технологического оборудования, резервуаров и трубопроводов на открытых площадках; обогрев поверхностей кровли и полов;
- поддержание постоянной температуры продукта при его транспортировке по трубопроводу на требуемые расстояния;
- исключение аварийных ситуаций при временной остановке производства при минусовых температурах;
- контроль показателей цепей питания нагревательных элементов (ток, напряжение);
- контроль состояния коммутационных аппаратов в цепях питания отходящих линий;
- рациональное управление включением/выключением отдельных линий в зависимости от порядка подключения и мощности;
- контроль температуры поверхности оборудования или окружающего воздуха с помощью преобразователя температуры;
- контроль состояния изоляции отходящих линий через трансформаторы тока утечки;
- контроль состояния главного контроллера;
- применение практически любых греющих кабелей в нагревательных элементах;
- возможность работы как в автоматическом, так и в ручном режимах управления.

Состав


Верхний уровень включает шкафы «ЭА-КИТ», автоматизированные рабочие места, программное обеспечение SCADA, оборудование связи.

Средний уровень включает шкафы «ЭА-КАТ», «ЭА-КАТех» (коммуникационное оборудование, контроллеры сбора данных, преобразователи интерфейсов и т.д.).

Нижний уровень включает обогреваемые шкафы «ЭА-tBOX», преобразователи температуры «ЭА-ПТ», саморегулирующиеся греющие кабели «ЭА-НС», взрывозащищенные обогреватели, коммутационное оборудование, датчики и т.д.

Управление системой «ЭА-ТЕРМ» построено на базе шкафа управления электрообогревом, который предназначен для питания кабельных линий электрообогрева, контроля параметров линий, сбора информации с датчиков температуры, управления параметрами системы электрообогрева, обмена информацией с АСУ верхнего уровня. Шкаф может быть выполнен как в общепромышленном, так и во взрывозащищенном исполнении.

Типовая структурная схема

Сертификация

Система промышленного обогрева «ЭА-ТЕРМ» производится в соответствии с требованиями Технического регламента ЕАС.

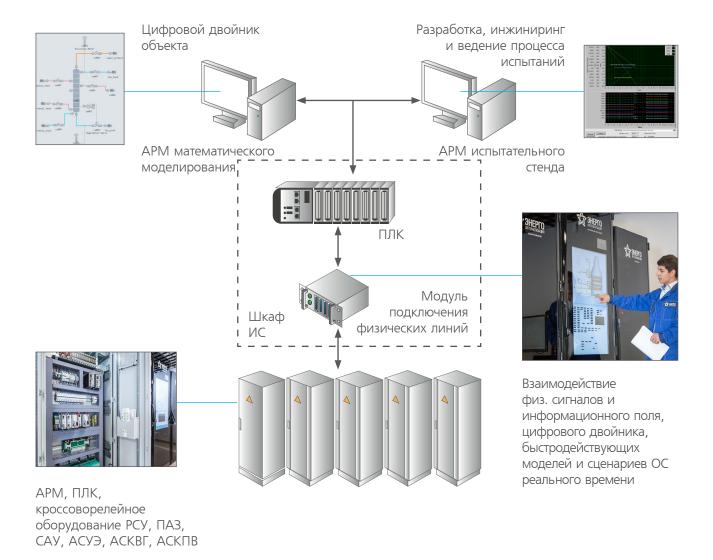
ЦЕНТР СЕРТИФИКАЦИИ И ИСПЫТАНИЙ АВТОМАТИЗИРОВАННЫХ СИСТЕМ И СРЕДСТВ АВТОМАТИЗАЦИИ

Центр сертификации и испытаний автоматизированных систем и средств автоматизации (далее — ЦСиИАС) — это испытательная лаборатория, позволяющая комплексно тестировать автоматизированные системы с полноценной имитацией работы автоматизированной системы (АС) на объекте с моделированием технологических процессов в динамике.

Назначение

- выявление несоответствия либо конструктивные недостатки проектируемых систем до монтажа на объекте;
- комплексное апробирование одновременной работы подсистем АСУТП, АСУЭ, АСПС, КЗ и ПТ;
- имитация штатных и аварийных ситуаций на объекте управления АС;
- сокращение сроков проведения ПНР на площадке;
- предварительная подготовка технологического персонала, обучение навыкам безопасного управления технологическими процессами объекта в штатных пусковых, переходных и установившихся режимах.

Применение цифрового испытательного стенда обеспечивает:


- автоматическую проверку АС на соответствие требованиям ТЗ, НТД, СТО;
- автоматическую и ступенчатую проверку алгоритмов регулирования, защиты и жизнеобеспечения;
- формирование и представление оперативной, учетной информации по испытаниям, включая ведение журнала измерений всех параметров с сохранением в базе данных, журнале событий;
- формирование протоколов испытаний с сохранением в базе данных испытательного стенда.

Технические характеристики

Показатель	Значение	
Кол-во имитируемых сигналов		
аналоговых входных сигналов	до 336*	
аналоговых выходных сигналов	до 144*	
дискретных входных сигналов	до 224*	
дискретных выходных сигналов	до 224*	
Характеристики быстродействия		
частота обновления дискретных входных сигналов	не ниже 2 кГц	
частота обновления дискретных выходных сигналов	не ниже 142 кГц	
частота обновления выходных аналоговых унифицированных сигналов	не ниже 24 кГц	
частота обновления входных аналоговых унифицированных сигналов	не ниже 51 кГц	
минимальный период цикла обработка логики модели	не больше 75 мкс.	

^{*} Количество может быть увеличено наращиванием модулей ввода-вывода ПЛК стенда.

Типовая структурная схема

БЛОКИ ТЕХНОЛОГИЧЕСКИЕ КОНТЕЙНЕРНОГО ТИПА «ЭА-БТ»

Блоки технологические контейнерного типа «ЭА-БТ»

представляют собой блочно-модульные здания полной заводской готовности, предназначенные для размещения различного вида оборудования.

Типы и назначения

- узлы учета нефти, газа и нефтепродуктов;
- станции насосные;
- станции компрессорные;
- блоки автоматики:
- блоки систем АСУТП;
- блоки анализаторных комплексов;
- блоки систем ЭХЗ;
- блоки систем телемеханики:
- блоки ремонтных мастерских;
- блоки операторные;
- блоки бытовые;
- блочные комплектные трансформаторные подстанции (БКТП);
- распределительные устройства (РУ-0,4 кВ, РУ-6(10)кВ);
- блоки дизельных электростанций;
- блоки газотурбинных/газопоршневых электростанций (ГТЭС/ГПЭС).

Блоки технологические «ЭА-БТ» являются проектно-компонуемыми изделиями и, в зависимости от назначения и требований заказчика, могут поставляться в максимальной заводской готовности с установленным оборудованием. Блоки могут выполняться в виде секций, что позволяет производить комплексы любой площади. Размеры секций и их исполнение позволяют транспортировать их всеми видами транспорта, с последующей досборкой на площадке заказчика.

Блоки технологические «ЭА-БТ» производятся в корпоративных цветовых решениях заказчика и могут быть дополнительно укомплектованы кабеленесущими, ограждающими, строительными конструкциями, мебелью и иными необходимыми принадлежностями в любом объеме согласно условиям эксплуатации, назначению блока и требованиям заказчика.

В блоках промышленного назначения предусматривается отопление, освещение, вентиляция, пожарная сигнализация. Блоки бытового назначения оснащаются дополнительно системой водоснабжения, канализации и кондиционирования воздуха.

Конструкция блока представляет собой раму, сваренную из стального замкнутого профиля, обшитую трехслойными сэндвич-панелями с негорючим утеплителем. В основании блоков используется сварной металлический каркас из стального горячекатаного профиля, покрытый листовым металлом и теплоизолированный негорючим утеплителем. Возможно изготовление и поставка блоков, выполненных на основе склеенных сэндвич-панелей.

Внутренняя отделка помещений бытового назначения может быть выполнена с использованием как МДФ-панелей, так и из любого материала по требованиям заказчика.

Все конструктивные и технические решения подтверждаются соответствующими расчетами.

Блоки выполняются с необходимой по назначению степенью огнестойкости с прохождением оценки качества огнезащиты в органах МЧС России.

Технические характеристики

Наименование характеристики	Значение		
Климатическое исполнение блоков	УХЛ1, ХЛ1		
Категория размещения по ГОСТ 15150	1		
Рабочее значение температуры окружающей среды при эксплуатации, °C	от -70 до +40		
Сейсмостойкость, баллы	8		
Тип блоков	Блочно-модульный		
Категория помещений по взрывопожарной и пожарной опасности согласно НПБ-105	А…Д (в зависимости от назначения блока)		
Степень огнестойкости помещений по СНиП 21-01, СНиП 31-03	He ниже III категории		
Максимальные габаритные размеры секции блока, не более:			
Длина, мм	12000		
Ширина, мм	3500		
Высота, мм	3500		

Сертификация

Блоки «ЭА-БТ» сертифицированы и выпускаются согласно ТУ 28.99.39-009-23157615-2017, ОСТ 26.260.18-2004 «Блоки технологические для газовой и нефтяной промышленности. Общие технические требования», СТО Газпром 2-2.1-607-2011 «Блоки технологические. Общие технические условия».

БЛОЧНО-МОДУЛЬНЫЕ ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ «ЭА-КТП»

Блочно-модульные трансформаторные подстанции «ЭА-КТП» предназначены для приема, преобразования и распределения электрической энергии трехфазного тока напряжением 6(10)/0,4 кВ, частотой 50 Гц.

Назначение

Обеспечение электроэнергией потребителей с заданными параметрами напряжения и тока на объектах нефтяной, газовой, химической, целлюлозно-бумажной, горнодобывающей промышленности, общего машиностроения, металлургии и других отраслей.

Оборудование системы электроснабжения производства ООО «НТЦ «ЭНЕРГОАВТОМАТИЗАЦИЯ» позволяет создать единое информационное пространство, вести контроль параметров электроэнергии, осуществлять управление питанием электропотребителей, построение, реализацию SMART-технологий и цифровых подстанций.

Варианты исполнения

По конструктиру	К – киоскового типа, неутепленные
По конструктиву	М – блочно-модульные из сэндвич-панелей, утепленные
По климатическому исполнению	В зависимости от Т3, согласно ГОСТ 15150
По наличию	С трансформаторами (сухими, масляными)
трансформаторов	Без трансформаторов (распределительный пункт)

Типовые отсеки

Отсек УВН	Отсек устройства ввода со стороны высокого напряжения. Возможные типоисполнения:
Трансформаторный отсек	Отсек для установки силового трансформатора. В качестве силовых трансформаторов могут применяться: • масляные (герметичные), устанавливаются в отдельный отсек с маслоприемником; • сухие, могут устанавливаться как в отдельном помещении (если они без кожуха), так и в помещениях РУ (когда он в кожухе). В КТП возможно использование любых типов трансформаторов российского и зарубежного производства.
Отсек РУНН	Отсек распределительного устройства низкого напряжения. В качестве РУНН (НКУ) применяются щиты одностороннего и двухстороннего обслуживания. НКУ могут оборудоваться системами учета электроэнергии, АВР, РЗА и сигнализации в зависимости от требований ТЗ.

Типовые отсеки могут быть совмещены в зависимости от T3.

Технические характеристики

Наименование характеристики			Значен	ие		
Мощность силового трансформатора, кВА	25; 40; 63; l00; 160; 250; 400	630; 1000; 1250	1600; 2000	2500	500 4000	
Номинальное напряжение на стороне ВН, кВ			6; 10			
Наибольшее рабочее напряжение, кВ			7,2; 1	2		
Номинальное напряжение на стороне НН, кВ			0,4			
Ток термической стойкости в течение 1 с на стороне ВН, кА	50					
Ток термической стойкости в течение 1 с на стороне НН, кА	10	20	30	40	10	00
Ток электродинамической стойкости на стороне ВН, кА	79					
Ток электродинамической стойкости на стороне НН, кА	25	50	70	100	150	
Номинальный ток сборных шин на стороне ВН, А	Не более 1600					
Номинальный ток сборных шин на стороне НН	630	1600	2500	3200	4000	6300
Номинальное напряжение вторичных цепей, В		Γ	теременно	pe 230		
Номинальное напряжение освещения, В	постоянное 220 постоянное 24					
Степень защиты по ГОСТ 14254	IP3I, IP4I, IP44, IP54					
Габаритные размеры транспортных модулей «ЭА-КТП», мм:	согласно КД на каждый вид (модификацию), но:					
- максимальная длина; - максимальная ширина; - максимальная высота	не более 12000 не более 3500 не более 3500					
Масса транспортного модуля «ЭА-КТП», кг	согласно КД на каждый вид (модификацию), но не более 20000					
Срок службы «ЭА-КТП», лет	от 25					

Примечание: Значения параметров, приведенные в таблице «Технические характеристики», могут быть уточнены или дополнены в соответствии с требованиями рабочей документации, ТЗ, в зависимости от вида и модификации сооружения.

Сертификация

Оборудование «ЭА-КТП» имеет все необходимые сертификаты и лицензии.

НИЗКОВОЛЬТНЫЕ КОМПЛЕКТНЫЕ УСТРОЙСТВА ТИПА «ЭА-КПТ»

Низковольтные комплектные устройства

типа «ЭА-КПТ» предназначены для приема и распределения электроэнергии в различных системах энергоснабжения, защиты отходящих распределительных линий от перегрузки и короткого замыкания, а также при необходимости для сбора и передачи информации о параметрах питающей сети и состоянии коммутационных аппаратов с применением наиболее распространенных протоколов передачи данных. «ЭА-КПТ» являются проектно-компонуемыми изделиями, что обеспечивает наиболее полное удовлетворение потребностей заказчика.

Варианты исполнения

Щит в общепромышленном исполнении в конструктиве с монтажной панелью («ЭА-КПТ-мп»)	Типовое решение с стационарным, но наиболее компактным расположением приборов
Щит в общепромышленном исполнении с выкатными модулями («ЭА-КПТ-вм»)	Устройство и форма секционирования шкафов «ЭА-КПТ-вм» позволяет выполнять «горячую» замену приборов отдельных линий без отключения всей установки

Состав

Корпус	Компонент, обеспечивающий безопасность обслуживающего персонала, защиту оборудования от внешних воздействий, уровень температуры и влажности.
Распределительная часть. Основные функциональные компоненты НКУ	Коммутационные аппараты и другие приборы, цепи распределения, устройства для подключения и организации проводников.
Дополнительное оборудование, предусмотренное техническим заданием	Приборы для организации АВР, приборы учета, устройства сигнализации, органы индикации и управления, поворотные панели, осветительные и измерительные приборы, система вентиляции, система обогрева, устройства ограничения доступа и др.

В комплектацию НКУ входит щит в собранном или частично разобранном для транспортировки виде; комплект эксплуатационной документации; товаросопроводительная документация; монтажные принадлежности; упаковка, обеспечивающая сохранность изделия.

Область применения

«ЭА-КПТ-мп» и «ЭА-КПТ-вм» предназначены для общепромышленного использования.

Производство в соответствии с ТУ 27.12.31-002-70386892-2017.

Технические характеристики

Наименование характеристики	Значение		
Номинальное напряжение питающей сети, В	до 1000		
Номинальный ток, А	до 3200		
Степень защиты от внешних воздействий по ГОСТ 14254-2015 (IEC 60529:2013)	от IP31 до IP65		
Доступ	односторонний/двухсторонний		
Исполнение	напольный/навесной		
Ввод кабелей	снизу/сверху		
Система вентиляции	естественная/принудительная		
Цвет покрытия корпуса	по умолчанию RAL7035 или другой по согласованию с заказчиком		

Эксплуатационные характеристики

Наименование характеристики	Значение		
Температура окружающей среды при эксплуатации, °С	от -50 до +60		
Атмосферное давление, кПа	от 84 до 106		
Относительная влажность воздуха при 25 °C, %, не более	от 45 до 75		
Вибрация	отсутствует		
Высота над уровнем моря, м	не более 2000		
Срок службы, лет	не менее 15		
Масса и габариты	зависят от назначения изделия		

Сертификация

НКУ «ЭА-КПТ» соответствует требованиям ТР ТС 004/2011 «О безопасности низковольтного оборудования», ТР ТС 020/2011 «Электромагнитная совместимость технических средств» и системы добровольной сертификации ИНТЕРГАЗСЕРТ.

ШКАФЫ ПРОТИВОАВАРИЙНОЙ ЗАЩИТЫ «ЭА-КПТ»

Шкафы противоаварийной защиты «ЭА-КПТ» предназначены для обеспечения безопасного автоматического управления и аварийной остановки технологического процесса. В шкафах предусмотрена возможность определения первопричины останова технологического процесса, самодиагностика состояния технических средств системы ПАЗ, перевод технологического процесса в безопасное состояние согласно технологическому регламенту, автоматическое обнаружение потенциально опасных изменений состояния технологического объекта, передача оперативной информации от системы ПАЗ в РСУ для сигнализации, регистрации и архивирования.

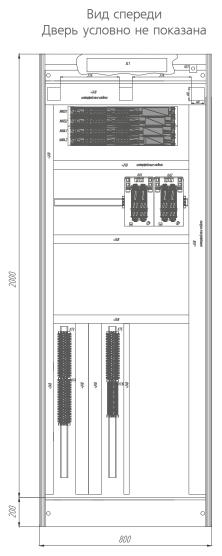
Шкафы противоаварийной защиты «ЭА-КПТ» строятся на базе отказоустойчивой высоконадежной вычислительной техники промышленного исполнения для долговременной круглосуточной эксплуатации на технологических объектах.

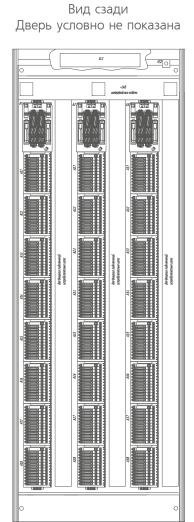
Шкафы противоаварийной защиты «ЭА-КПТ» применяются как ПАЗ (ШУ), ПАЗ (УСО), для реализации в системе АСУ ТП.

Состав*

- резервируемые программируемые логические контроллеры;
- модули ввода-вывода для обработки и сбора сигналов;
- электротехническое оборудование формирования и распределения бесперебойного электропитания;
- компьютерное оборудование;
- оборудование для организации связи и локально-вычислительных сетей;
- барьеры искрозащиты, искробезопасные преобразователи.

Технические характеристики


Наименование характеристики	Значение		
Напряжение силовых цепей, В	~230, 50 Гц		
Напряжение цепей автоматики, В	=24 (либо иное по согласованию)		
Сопротивление изоляции в нормальных условиях, не менее, МОм	20		
Температура окружающей среды при эксплуатации, °С	от +10 до +35		
Относительная влажность воздуха при температуре +25°C, не более, %	80		
Степень защиты — по ГОСТ 14254-2015	не хуже IP54		
Высота над уровнем моря, не более, м	не более 2000		
Срок службы, лет	не менее 15		
Высота, мм	2000 (1800)		
Глубина, мм	800 (600)		
Ширина, мм	800 (600)		
Масса, кг	не более 1000		
Доступ	односторонний/двухсторонний		
Исполнение электропитания	1 особая группа		
Подвод кабелей	сверху/снизу		
Вентиляция	естественная/принудительная		
Внутреннее освещение	да (светодиодные светильники)		
ИБП	да (опционально, по требованию Т3)		
Гальваническая развязка	да (опционально, по требованию ТЗ)		


Приведенные технические характеристики не являются окончательными и могут быть изменены в соответствии с проектными решениями.

^{*}Приведенный состав может быть изменен по требованию заказчика:

Внешний вид и габаритные размеры

Вид спереди

Шкафы автоматизации типа «ЭА-КПТ» по определенному функционалу реализованы в виде шкафов управления (ШУ), кроссово-релейных шкафов (ШКР), устройства связи с объектами (УСО) и шкафов комбинированных модификаций.

ШКАФЫ ИЗМЕРЕНИЯ И УПРАВЛЕНИЯ «ЭА-КАТ»

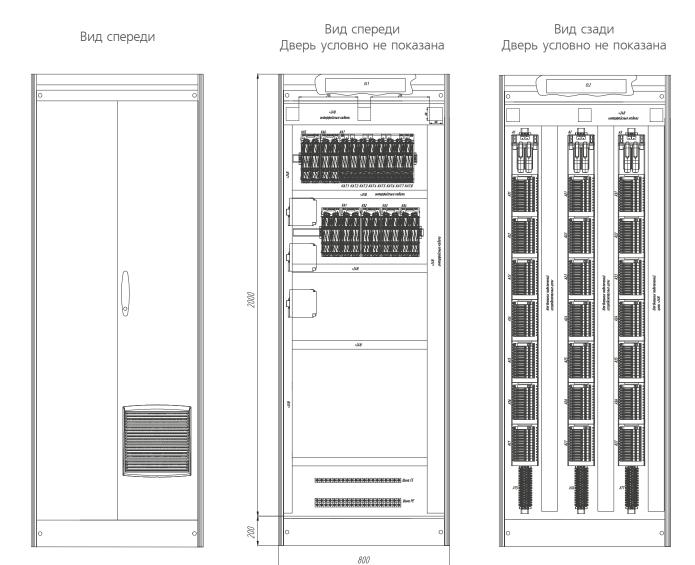
Шкафы измерения и управления «ЭА-КАТ» предназначены для сбора, контроля состояния и управления технологического процесса. В шкафах предусмотрены диагностика и выдача сообщений по отказам всех элементов комплекса, передача данных в системы верхнего уровня, выявление аварийных и предаварийных ситуаций, сигнализация о выходе за границы допустимых значений параметров оборудования или процессов, представление информации на операторских станциях в виде графиков, мнемосхем, гистограмм, таблиц и т.п.

Шкафы измерения, управления «ЭА-КАТ» строятся на базе отказоустойчивой высоконадежной вычислительной техники промышленного исполнения для долговременной круглосуточной эксплуатации на технологических объектах.

Шкафы измерения, управления и «ЭА-КАТ» применяются как РСУ (ШУ), РСУ (УСО), САУ для реализации в системах: АСУ ТП, АСУ Э, САУ, СЛТМ.

Состав*

- программируемые логические контроллеры;
- модули ввода-вывода для обработки и сбора сигналов;
- электротехническое оборудование формирования и распределения бесперебойного электропитания;
- компьютерное оборудование;
- оборудование для организации связи и локально-вычислительных сетей;
- барьеры искрозащиты, искробезопасные преобразователи.


Технические характеристики

Наименование характеристики	Значение		
Напряжение силовых цепей, В	~230, 50 Гц		
Напряжение цепей автоматики, В	=24 (либо иное по согласованию)		
Сопротивление изоляции в нормальных условиях, не менее, МОм	20		
Температура окружающей среды при эксплуатации, °C	от +10 до +35		
Относительная влажность воздуха при температуре +25 °C, не более, %	80		
Степень защиты — по ГОСТ 14254-2015	не хуже IP54		
Высота над уровнем моря, не более, м	не более 2000		
Срок службы, лет	не менее 15		
Высота, мм	2000 (1800)		
Глубина, мм	800 (600)		
Ширина, мм	800 (600)		
Масса, кг	не более 350		
Доступ	односторонний/двухсторонний		
Исполнение электропитания	1 особая группа		
Подвод кабелей	сверху/снизу		
Вентиляция	естественная/принудительная		
Внутреннее освещение	да (светодиодные светильники)		
ИБП	да (опционально, по требованию Т3)		
Гальваническая развязка	да (опционально, по требованию ТЗ)		

Приведенные технические характеристики не являются окончательными и могут быть изменены в соответствии с проектными решениями.

^{*}Приведенный состав может быть изменен по требованию заказчика.

Внешний вид и габаритные размеры

Шкафы автоматизации типа «ЭА-КАТ» по определенному функционалу реализованы в виде шкафов управления (ШУ), кроссово-релейных шкафов (ШКР), устройства связи с объектами (УСО) и шкафов комбинированных модификаций.

ШКАФЫ КОММУНИКАЦИОННЫЕ «ЭА-КИТ»

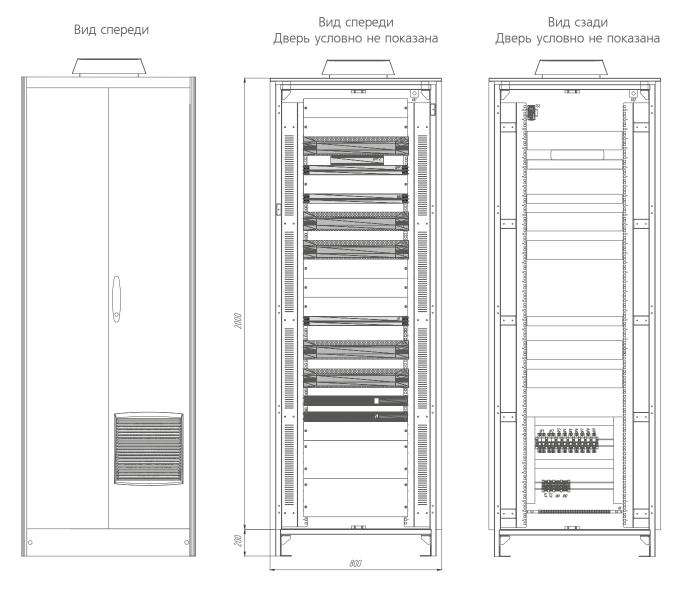
Шкафы коммуникационные «ЭА-КИТ» предназначены для получения, отправки, хранения и обработки данных, хранения информации о конфигурации системы, контроля состояния и работы компонентов ПТК, обеспечения взаимодействия между компонентами системы.

Шкафы коммуникационные «ЭА-КИТ» применяются как шкафы сетевые (ШС), серверные шкафы (СШ) и шкафы рабочих станций (ШРС) для реализации в системах: АСУ ТП, АСУ Э, САУ, СЛТМ.

Все устройства являются проектно-компонуемыми изделиями и производятся на основании рабочей документации.

Состав*

- оборудование для организации связи и локально-вычислительных сетей;
- серверное оборудование (серверы обработки и хранения данных, интеграционные станции);
- электротехническое оборудование формирования и распределения бесперебойного электропитания;
- компьютерное оборудование;
- межсетевые экраны и криптомаршрутизаторы.


Технические характеристики

Наименование характеристики	Значение		
Напряжение силовых цепей, В	~230, 50 Гц		
Напряжение цепей автоматики, В	=24 (либо иное по согласованию)		
Сопротивление изоляции в нормальных условиях, не менее, МОм	20		
Температура окружающей среды при эксплуатации, °C	от +10 до +35		
Относительная влажность воздуха при температуре +25°C, не более, %	80		
Степень защиты — по ГОСТ 14254-2015	не хуже IP54		
Высота над уровнем моря, не более, м	не более 2000		
Срок службы, лет	не менее 15		
Высота, мм	2000 (1800)		
Глубина, мм	800 (600, 1000)		
Ширина, мм	800 (600)		
Масса, кг	не более 350		
Доступ	односторонний/двухсторонний		
Исполнение электропитания	1 особая группа		
Подвод кабелей	сверху/снизу		
Вентиляция	естественная/принудительная		
Внутреннее освещение	да (светодиодные светильники)		
ИБП	да (опционально, по требованию Т3)		
Гальваническая развязка	да (опционально, по требованию ТЗ)		

Приведенные технические характеристики не являются окончательными и могут быть изменены в соответствии с проектными решениями.

^{*}Приведенный состав может быть изменен по требованию заказчика.

Внешний вид и габаритные размеры

Шкафы коммуникационные типа «ЭА-КИТ» по определенному функционалу реализованы в виде шкафов сетевых, серверных шкафов, шкафов рабочих и шкафов комбинированных модификаций.

ЗАМЕТКИ

www.ntcea.ru

Дополнительную техническую информацию можно получить по телефону: +7 (347) 286-16-84 или по e-mail: info@ntcea.ru

ООО «НТЦ «ЭНЕРГОАВТОМАТИЗАЦИЯ» ИНН 7801300320, КПП 027601001 450096, Республика Башкортостан город Уфа, улица Шафиева, дом 44